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A mechanical system whose dynamics can be described by Lagrange's equations of the secondkind is considered. It is assumed 
that the kinetic energy matrix of the system is unknown and the system is subject to uncontrollable bounded external forces (such 
a situation occurs, for ~mmple, if the load carried by a manipulator remains unknown). A control law is constructed which enables 
the system to be transferred from an arbitrary initial state to a given final statein a finite time using a force of bounded modulus. 
In the algorithm prop~eed linear feedback is used with piecewise-constant coefficients: the coefficients increase as the system 
approaches the final state. The algorithm rests on the second Lyapunov method. The results of a numerical model of the dynamics 
of a double-link unit me presented. © 1997 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider a mechanical system whose dynamics can be described by Lagrange's equations of the 
second kind. We denote by q e R n the vector formed by the generalized coordinates of the system, by 
P = 4 the vector of generalized velocities, by S the external forces acting on the systems, by u the control 
forces, and by T(q, p) = ~4(q)p,pl/2 the kinetic energy of the system. HereA(q) ~ C 1 is a positive definite 
symmetric matr~ lind ( ' ,  ") denotes the scalar product. 

The equations of motion of the system in Lagrange form are 

d ~T ~T=.s+ u (1.1) 
dt Op Oq 

We impose the conditions 

ISl~< So, So > 0 (1.2) 

lul~ < U, U > 0 (1.3) 

on the n-dimensional vectors of external forces S and control forces u, Here and everywhere below 
I • t denotes the Euclidean norm of a vector or matrix (by the norm of a matrix we mean the norm of 
the corresponding operator in Euclidean space). 

The forces S will[ be assumed to be unknown and treated as external perturbations. Along with them, 
other forces of specified magnitude may act on the system. However, we assume that the control 
resources are large enough to compensate for these specified forces, U being the maximum admissible 
control intensity remaining after such compensation. 

We shall assume; thatA(q) is an unknown matrix Whose eigenvalues lie in the range [m 2, M2], 0 < m 
~< M for any q and[ the partial derivatives of A(q) are uniformly bounded in the norm, i.e. 

VZ E R n m2z 2 ~< (A(q)~.,z) <~ M2z 2 

(1.4) 

I~)A(q)lOqil<~D, D>0,  i=1 .... ,n 

It is required to construct a control function that satisfies (1.3) and takes thesystem from an arbitrary 
initial state (q.,p.) to a prescribed final state (4, 0) in a finite time. 

An illustrative example of this formulation of the problem is given by the problem of controlling a 
system of counecte.d rigid bodies whose precise mass-inertial characteristics are unknown. In this case 
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not only the inertia matrix of the system, but also the forces acting on the bodies remain unknown. 
Apart from these forces, the system may be subject to other external perturbations. The problem of 
transporting a load of unknown mass by a manipulator is a special ease of this problem. 

The formulation of problems on the construction of bounded control in a mechanical system under 
conditions of uncertainty considered in [1-4] is closest to the above. Thus, a control function was 
constructed in [1] using a proportional-integro-differential (PID) controller which transferred system 
(1.1) with unknown matrixA(q) to a prescribed equilibrium state in an infinite time when there are no 
external forces. In [2, 3] an approach based on decomposition was developed, which enables one to 
control a system with known inertia matrix subject to uncontrollable external perturbations using a 
bounded force. A control law, which makes use of linear feedback with piecewise-constant coefficients, 
has been proposed in [4] for controlling (1.1) with S = 0. This approach is considered below in the case 
of non-zero external perturbations. 

We shall seek a control function as a linear feedback in terms of the generalized coordinates and 
velocities u = - ap - b(q - ~), where a and b are piecewise-constant ftmctious. We know [1] that if a and 
b are arbitrary positive constants and S = 0, the equilibrium (~, 0) of the closed system (1.1) is 
asymptotically stable as a whole, i.e. the control in question transfers the system from an arbitrary initial 
state to the final state (~, 0) in an infinite time. This feedback control law with constant coefficients 
has a significant disadvantage, namely, the control forces do not satisfy (1.3) far from the terminal state 
and they are small near this state. The control resources given by (1.3) are not completely utilized, as 
a result of which the time of motion is infinite. To accelerate the transition of the system we shall vary 
a and b as the final state is approached. 

Without loss of generality we can assume that 4 = 0 (otherwise it suffices to take q - 4 as the vector 
of generalized coordinates). We will reformulate the original problem as follows. Suppose that the initial 
conditions q(0) = q., p(0) = p.  and constants m, M, D, U are given. It is required to specify how the 
feedback factors a and b in the control function 

u = - ap - bq (1.5) 

should be varied so that for any external perturbations S that satisfy (1.2) system (1.1), (1.5) arrives at 
the position (0, O) in a finite time and restrictions (1.3) on u are satisfied along the trajectory. 

2. D E S C R I P T I O N  OF THE C O N T R O L  A L G O R I T H M  

Consider the function 

W(q,p)  = M2p 2 +(M4p 4 +U2q 2/2) )~ (2.1) 

The quantity W(q,p)  has the dimension of energy and characterizes the distance between (q,p) and the 
2 2  ,2~ 2 final state (0, 0). The level set W(q,p)  = C of Win phase space is an ellipsoid 4 C M p  + U"q 2 = 2 C ,  

which collapses to the origin (0, 0) of the system of coordinates as C ---> 0. We put 

O l = ' f ~ D / 2 ,  W o = M 2 U I ( 2 ~ D I ) ,  W k = W o l 2  k (2.2) 

and define a family of ellipsoids W(q,p)  = Wk, where k runs through the set of integers. Suppose that 
the point (q., p.)  corresponding to the phase state of the original system at the initial time t = 0 
lies on the ellipsoid W(q, p)  = Wk or inside it, but not outside the ellipsoid W(q, p)  = Wk.+l, i.e. 
Wk*+l < W(q . ,p . )  <~ Wk.. We denote by tk*+l the first time when the trajectory of the system reaches 
the ellipsoid W(q,p) = Wk*+l. Below it will be shown that for the chosen control algorithm the trajectory 
of the system tends to the origin, which means that such a moment exists. We put q(tk*+l)= qk'+l, 
P(tk*+O = Pk*+l and denote by tk.+2the first time when the trajectory of the system reaches the ellipsoid 
W(q, p)  = Wk*+2. We put q(tk. + 2) = qk* + 2, p(tk* + 2) = Pk" + 2 and so on. 

The sequence {tk}, k = k. + 1, k. + 2 , . . .  defines the instants when the feedback factors in (1.5) 
vary. We define the values of these factors in the time interval [tk, tk+l) as follows: 

bk = U 2 i (4W k ), a 2 = m2bk (2.3.) 

The initial values of the factors are determined from (2.3) when k = k.. In the phase space q, p the 
trajectory of motion of the mechanical system under consideration will therefore consist of segments 
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of trajectories of different systems of differential equations: the kth interval connects (qk,Pk) and (qk+l, 
Pk+l) and corresponds to a system of the form (1.1), (1.5) in which the gains a = ak, b = b k are constant 
and given by (2.3). All points (qk, Pk) lie on the corresponding ellipsoids W(q, p) = Wk, k > k.. 

Remark. The trajectory of the system tends to the origin (0, O) of the system of coordinates, but W is not, in 
general, a decreasing ftmction along the trajectory. Thus, along with the points (qt, Pk), the trajectory can also have 
other points of inten~ction with the ellipsoids W(q,p) = Wk. Suppose, for example, that once the new factors are 
assigned at time tk, the trajectory of the system begins to "move away" from the final position (0, O) and it intersects 
the ellipsoid with number k - 1 again at some f > tk. At the instant f the index k and the gains ak and bk do not 
vary. They take new values only when the trajectory reaches the ellipsoid W(q,p) = Wk+l: k increases by one, a 
increases by a factor of ~/2 and b by a factor of two. Therefore the gains ak and b k in (1.5) depend on the known 
parameters m, M, U, D of the problem and on the current value of k. At each instant the index k is equal to the 
number of the minitaum ellipsoid that has already been visited by the trajectory of the system. 

3. J U S T I F I C A T I O N  OF THE A L G O R I T H M  

We shall study the behaviour of the trajectory of the kth system for some k > k.. The section of the 
trajectory that is of interest to us starts at (qk, Pk) at time tk and ends in accordance with the algorithm 
at time tk+l on the ellipsoid W(q,p) = Wk+l. Since the existence of an intersection of the trajectory 
with the (k + 1)st ellipsoid has not been shown so far, we shall assume that tk+l = ** if there is no such 
intersection. Below it will be shown that tk+l < ~. 

We introduce the Lyapunov function 

Vk(q,p) = T(q,p)+bkq 2 / 2 +ek(A(q)q,p) (3.1) 

The number ek > 0 is to be determined. The expression for IA'(q,p) contains the inertia matrixA(q), 
which is assumed to be unknown. We shall estimate the value of this function at the point (q,p) in phase 
space by means of known quantities. Suppose that ek satisfies the condition 

e 2 < m2bk I (4M 4) (3.2) 

We find a lower bound of Vt(q,p) using (1.4) and the Cauchy inequality ekM21 q I[P I ~< f.2kM4q2]m2 -I- 
m2p2/4 as follows: 

2 m2p2 
Vk(q,p)~ bkq~ + 

2 2 
CkM ~ 2 2 _ekM21qllpl>~ -'~ .)q + p2 

from which, taking (2.2) into account, we obtain the inequality 

V_k(q,p)<~ Vk(q,p), V~(q,p)=(bkq 2. +m2p2)14 (3.3) 

We now estimate Vk(q, p) from above using (1.4) and the inequality ~kl q IIP I ~< e2kq2/2 + Pz/2 as 
follows: 

M2p 2 (bk +~2M2) _2 M2p2 Vk(q,p)<~ bkq 2 + +EkM21qllpl~ q + 
2 2 2 

Since m2/(4M 2) < 1, (3.2) implies that e2M 2 < bk, whence we obtain the inequality 

Vk(q,p)~Vf(q ,p) ,  V~(q,p)=bkq 2 +M2p 2 (3.4) 

We shall establish relations between the quadratic forms vk+(q, p)  and the function W(q, p), whose 
level sets generate the family of ellipsoids defined above. The equality 

2Vf(qk,pk)=W k (3.5) 

holds. 
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For the proof we substitute the expression for bt from (2.3) into expression (3.4) for V~+. We obtain 
, , l  " ; " i 

V~ (qk, Pt ) = U2q2 + 4 W t M 2 p2 (3.6) 
4 W t  

By construction (qk, P~) lies on the ellipsoid with number k. By the definition (2.1) of Wit follows that Wk = 
W(q~pk) = M~ + (M4p~ + U2q2~/2) ~. Using this equality the nhmetator in (3.6) can be reduced to the form 
2W~ which implies (3.5). 

Equality (3.5) means that for any k the ellipsoid with number k is a level set of the quadratic form 
Vt+(q,p) corresponding to Wt/2. Suppose that the system is in a state (q,p) at time t, where tk < t < tt+x. 
According to the algorithm, (q,p) lies outside the (k + 1)st ellipsoid, so Vk++l(q,p) = bt+lq 2 + M ~  2 >>- 
Wk+x/2. By (2.2) and (2.3) the equalities Wt,+l = Wk/2, b~+l = 2bk hold, so Vk++l(q,p) = 2bkq 2 + M~7 2 
Wk/4. We estimate the value of Vk+(q,p) at time t by its value Vt+(qk, pk) at time tk as follows: 

• V+ k (q, p) >~ (2bkq 2 + M2p 2 ) / 2 >>- W k / 8 = V+ k (qt, Pt ) / 4 (3.7) 
We now proceed to find the derivative ~ .  We differentiate V ~ using (1,1) and (1.5) to get 

([ ¢ . ~qi] ) -¢kat(q'p)+(S'E~q+p) (/~(q,P)=-E/~bkq 2 -  atl-EkA(q)--~"~',  qi P,P 
Z i=l 

(3.8) 

where I is the identity matrix. Let us estimate the various terms in (3.8). By (1.4) 

lekA(q)l~< ekM 2, ~ i q / ~ l -  e'kDl!ql' DI = ~ O  (3.9) 
2 i=l uqi I 2 

From the Cauchy inequality it follows that 

~. tak (q, p)J<~ e~atq 2 + akp 2 / 4 (3.10) 

Using (1.2), (3.2) and (3.7) we estimate the last term in (3.8) as follows: 

I(S, ek q +p)l~< Solekq + pl <. S0[5e2q 2 + 5p 2 / 4] Y2 ~< So[5(bkm2q 2 I M 4 .4- p2) / 4]~ 

~'5S0 af-V++k(q,p) = "~SoVf(q,P) _< ~ /~So . ,  2 +M2p2) (3.11) 

Substituting 0.9)-(3.11) into (3.8), we arrive at the limit 

_ 4-i-6Sob, 
a'  tM. k)q 2- 

' " " - - ,  ~OMSo'~ 2 (3.15) 

We define the parameter ~k by the formula 

• rnU mU 2 } e~=mm I. ~ . -  , 
i 

LsM w: (3.13) 

• Lemma 1. Let the condition 
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.(m. l S 0 ~ nun ~ ,  (3.14) 
2~/10 J 

be satisfied. Then, by virtue of system (1.1), (1.5), the derivative I~ at those points of the trajectory 
that lie in the region G = {(q,p)  : I q I< ~ (2 )Wt /U )  satisfies the inequality 

~:k ( q, p) ~ _Etbtq2 14- atp z I 8 0.15) 

Proof. Inequality (3.2) is a consequence of (3.13), so (3.3), (3.4), (3.11) and (3.12) are satisfied. Using 
(23) and (3.13), we obtain 

 t.t - ,  8 w :  - , M "  , 
(3.16) 

Relationship (3.14) and formulae (2.3) imply that 

~OSobt ~ b t ,  ~/'~MS o ~ mU = a t 
(3.17) 

From (3.13) and the definition of G it follows that 

~kDllql mU2.. lql~ mU.. _~ 
3 2 ~ f 2 W :  16W: 8 

0.18) 

Substituting (3.16)--(3.18) into (3.12), we obtain (3.15). 

Lemma 2. Suppose that conditions (3.14) are satisfied. Then the part of the trajectory corresponding 
to the time interveJ Irk, k+1) ties wholly in G. 

Proof. We shall veJif3v that the initial point (qk, Pk) of the trajecto~ belongs to G. By construction (a t, Pk) belongs 
2 4 112 2 ~r-~ to the ellipsoid with number k, i.e. M2pk + (M4pk + UZq2t/2) . It follows that q2 k ~ 2WZt/U, and hence 

(qk,~k) ~ 6 .  
Suppose that the assertion of the lemma does not hold and let Y be the first instant when the trajectory reaches 

the boundmy of G such that t" > tk. By I.emma I, I~ is strictly d ~ g  in G along the solutions of system (1.1), 
(1.5). Whence, and by (3,4) and (3.5), we obtain 

V t (q(t'),p(t')) < V t ( qk ,Pt) ~ V+ t (qk ,Pt ) = Wt /2  

On the other hand, q2(t') = 8W2t/U 2 on the boundary of G. By (2.3) and (3.3) it follows that 

V t (q(t'),p(t')) ~ V._k(q(t'),p(t'))~ bkq2(t')/4 = W k 12 

This contradictionoompletes the proof of the lemma. 

By (33) Lyapunov's function (3.1) is positive definite and (3.15) implies that its derivative is negative 
and non-zero outside the (k + I)st ellipsoid. Hence we can conclude that there is an instant tk+l < 
such that the trajectory reaches the ellipsoid with number k + 1. We shall verify that the control forces 
satisfy (1.3) on the section of the trajectory correspondingto the half-interval of time [tt, tt+t), we  shell 
find a bound of the norm of the vector u using (2.3) for ak and inequality (3.3) as followsi 

l Ul 2 =l bkq + akpl 2 ~< 2(b2q 2 + a2p 2 ) = 2b t (bkq 2 ÷ m2p 2 ) = 8bk V_ t (q, p) ~ 8bk V k (q, P) 

Since V ~ does not increase along this part of the trajectory it follows that V~(q,p)  ~ V t (qbpk) .  Taking 
(2.3), (3.4) and (3.5) into account, we obtain 

[ul 2 ~ 8bt Vk ( qt , pk ) ~ 8bt V+t ( qt , p t  ) = 4bk W k = U 2 
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4. AN ESTIMATE OF THE TIME OF MOTION 

It follows from (2.3) and (3.13) that a~/8 = mU/16W~ :z >1 M2~/2. Using this estimate, we extend (3.15) 
as follows: 

k'ic (q, p) <~ --,~.icbicq 2 / 4 - M2~kp 2 12 ~ -~.ic V+ ~ (q, p) / 4 <~ -~.ic Vic (q, p) 14 

We integrate this inequality over the half-interval [tk, tk+l) to get 

tic+I --tlc <~--'-4 in Vic(qic,pt) (4.1) 
~.ic VIC (qt+l ,  PIC+I ) 

Let us estimate the expression under the logarithm sign. By definition, the quadratic forms ~ and l~_ 
are related by Vk_(q, p)  ;~ m2Vk+(q, p)/(4m2). Whence, using (3.5) and the equalities bk = bk+l/2, 
Wk+l ---- Wk/2, we obtain 

2 
m IC 

VIC (qic+l, PIC+| ) ~ V-t (qk+l, Pic+l ) ~ ~ V+ (qt+t, Pk+l ) = 

- m2 (bic+i .2  + M  pic+l)~ m2 Vf +1 -m2Wk 
- 4-M2"L-2 -'tIc+' 2 2 ~8__M_ F (qt+1, pic+1) _ 3_2_.~T 

It follows that (4.1) can be extended 

tic+l -tic <~ ---41n 32M2Vf(qt 'Pk) =---8 In 4M 
£ ic m 2 Wic f. k m 

(4.2) 

ek being given by (3.13). We can see that the expressions under the min sign in (3.13) are identical at 
2 1/2 2 k = O. If  (qbPk) lies outside the ellipsoid with number zero, i.e. k < 0, then mU/(SM WE ) > m U l  

(16~(2)D1Wkm), and if (qk, Pt~) lies inside or on the null ellipsoid, that is, k ~> 0, then the reverse inequality 
holds. 

We assume initially that k < 0. We substitute the expressions for ~ and Wk into (4.2). This gives 

32.2 ~ M 3 4M 
tt+ I - t  k ~< ~2 -3k/2, "c = m~CF.~l U In m (4.3) 

The time of motion of the system from (qk, Pk) to (q0,P0), i.e. from the ellipsoid with number k to that 
with number zero does not exceed 

-i (242) -k - i 
TI -- '~ E 2-3i/2 -- '~2N/2 

i=k 2"~/2-1 
(4.4) 

Now suppose that k ~> 0. In this case (4.2) takes the form 

tk. I - t  k ~< x2 -*/2 (4.5) 

and the time of motion from the ellipsoid with number zero to the final position (0, 0) does not exceed 
the sum of the series 

(4.6) 

Up until now we have assumed that k > k, and considered a section of trajectory whose end-points 
lie on two neighbouring ellipsoids in the family of ellipsoids specified above. Inequalities (4.5) and (4.6) 
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provide an estimal;e of the time of motion of system (1.1), (1.5) along such a segment. Now let 
k = k,. At the point (q., p.)  corresponding to the initial state of the system W satisfies the inequality 
Wk,+l < W(q . ,p . )  <<- Wk,. Therefore (q . ,p , )  does not, in general, lie on the ellipsoid with number k.. 
Nevertheless, at the: initial instant t = 0 we determine a and b from (2.3) from k = k.. Using an argument 
similar to the abow~ it can be shown that the trajectory of system (1.1), (1.5) reaches the ellipsoid with 
number k. + 1 a~Ld the time of motion towards this ellipsoid satisfies (4.3) if k. < 0 and (4.5) if 
k. I> 0. The total time 7". of motion of the system from .(q., p,) to the final position (0, 0) satisfies the 
inequality T. ~< 7"1 + T2, where 7"1 and 7"2 can be computed from (4.4) and (4.6) from k = k.. 

5. EXTERNAL PERTURBATIONS 

We now consider the restrictions imposed on the external perturbations S. It can be seen that for 
k ~> 0, i.e. inside the ellipsoid with number zero, condition (3.14) is equivalent to 

mU 
S0~<o, o = ~  (5.1) 

and outside the null ellipsoid (3.14), i.e. for k < 0, it is equivalent to 

So ~< o2 k (5.2) 

The least value of k along the trajectory starting at (q,,p.) is equal to k,. Thus, if the point (q.,p,) lies 
inside or on the null ellipsoid, then k, t> 0, and (5.1) is a sufficient condition for the system under 
consideration to be taken from this point to the origin of the system of coordinates in a finite time using 
the above control law. But if (q., p,) lies outside the null eUipsoid and k, < 0, then such a sufficient 
condition is provided by inequality (5.2) for k = k.. 

The proposed sutffieient conditions for the system to be taken to the origin are such that the maximum 
admissible intensity So of external perturbations depends on the initial state of the system: the further 
away (q., p,) is from (0, 0) the smaller should So be. However, these conditions may be weakened if 
the control law is modified. 

We will show that condition (5.1) is sufficient for the system to be taken from (q . ,p , )  to the origin. 
It has been observed above that any point of the form (4, 0) in the phase space of the system can be 
chosen as the final state. Then the family of ellipsoids on which the gains are altered turns out to be 
shifted by the vector q, the parameters of the ellipsoids remaining as before. We will assume initially 
that the velocity of the system satisfies the inequality 

U (5.3) 

at the initial instaJat, that is, the point (q., p.) lies on or inside the ellipsoid W(q - q., p )  = Wo (this is 
the null ellipsoid with centre moved to (q., 0)). We apply the control algorithm presented and move 
the system to the state (q,, 0). It follows from the above that for such a transition to be realized it suffices 
that condition (5.1) is satisfied. We choose a finite sequence of points (q], 0) such that q0 = q*, 41 = 0 
and 

g 2 

I~j-~j_ll<~ 2Dl, j = l  ..... J (5.4) 

We take the system from (q., 0) to the origin of coordinates in J steps, applying the above control 
algorithm again each time At thejth step (4' 1, 0) corresponds to the initial state and (4j, 0) to the final 

" . . ] - -  - -  . . . . . .  

state of the system. Inequahty (5.4) means that for any j, (4j-1, 0) hes on or reside the null elhpsold with 
centre at (qj, 0). Corisequently, it is sufficient if So satisfies (5.1) for the transition from (qj-1, 0) to (qj, 
0) to be realized. 

Now suppose that (5.3) is not satisfied at the initial instant. We supplement the control algorithm by 
one more stage preceding all the others. The aim of the preliminary stage is to reduce the velocity of 
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motion of  the system to a value satisfying (5.3). In H = {(q, p)  : p2 > U/(4q(2)D1)} we put u = 
-(U/I p I)P. By the theorem on the variation of the kinetic energy of the system, conditions (5.1) and 
the definition of  H it follows that the limits 

T(q, p) ~ m2p 2 > m2U 

4~/2D I 

t = (u + S . p )  ~ - ( U  - So )l p l *  - 1 - ~ ) t ,  2----~-~1 ) 

hold in H, implying that the system will reach H in a finite time. As soon as the traje~'tory reaches the 
boundary of H the preliminary stage of control is completed and the realization of the above algorithm 
of the stepwise transition of the system into the final state begins. 

6. R E S U L T S  OF M O D E L L I N G  

The control law proposed was used in a numerical model of the controlled motion of a two-link unit 
on a fixed support. The hinge angles of the links in the stationary system of coordinates were chosen 
as the generalized coordinates of  the system. The expression for the kinetic energy of the unit has the 
form T = Rlq 2 + R2q 2 + 2R 3 cos(q 1 - q2)c~lq2. Calculations were performed for the following parameter  
values: R1 = 13.9; R 2 = 2.1; R 3 = 3 kg m ' .  The eigenvalues of  the inertia matrix are between m 2 = 1.9 
and M 2 = 14.1 kg m 2, while the norm of  the partial derivatives of the matrix is bounded by D = 3. 
The maximum admissible magnitude of  the vector of control torques was chosen to be equal to U = 
500 N m. The system was moved from the state ql = 0.5; q2 = i rad, q'l = q'2 = 0 rad/s to the position 

ql = q 2 - - q l  = q ' 2 - - 0 .  
The value of  W at the point corresponding to the initial state of the system is equal to W(0) = 395 

and the quantity determining the null ellipsoid is equal to W0 = 1171. Since W0/4 < W(0) < Wo/2, the 
first value of k is equal to one. The initial point of  the trajectory lies inside the null ellipsoid, so So only 
needs to satisfy condition (5.1), which in the case in question takes the form So ~< 3.6. The perturbing 
moments in the model are given by the constant vector-valued function S(t) = (0; 3.6). 

In Figs 1 and 2 we show the graphs of the time dependence of  the phase coordinates of  the system 
The dashed curve corresponds to the generalized coordinates (rad) and the dotted curve corresponds 
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to the velocities (tad/s). Figure 1 describes the motion of the first link and Fig. 2 the motion of the 
second link. The solid line in Fig. I shows the time dependence of the Euclidean distance in the phase 
space q, q between the actual state of the system and the terminal state. The integration of equations 
was terminated when the distance became less than 0.01. During thetime of integration of the equations 
the feedback factors in (1.5) changed 15 times. The solid curve in Fig. 3 illustrates the behaviour of W 
along the trajectory. It can he seen that neither the distance between the actualand the final states of 
the system nor the function W depend monotonically on time. 

In Fig. 4 we show the time dependence of the absolute value of the vector of control torques (the 
thin curve) and the magnitude of the gain ak (the step function). In accordance with the algorithm, the 
feedback factors a k and bk are chosen in such a way that for any admissible values of the unknown 
parameters, that is, the elements of the inertia matrix and the components of the vector of perturbing 
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torques, the control constraints (1.3) are satisfied along the resulting trajectory of motion. For a specified 
mechanical system the domain of variation of these parameters contracts significantly and the choice 
of the gains may turn out to be unnecessarily rough. One can see that in the case under consideration 
the control torques obtained are much smaller than the maximum allowed magnitude of U. This is why 
we modelled the motion of a two-link unit controlled by the same laws, but with gains ak and bk twice 
as large as those prescribed by the algorithm. In Fig. 3 the dashed curve represents the time dependence 
of W, while in Fig. 4 it represents the absolute magnitude of the vector of control torques for this control 
method. The time it takes the system to reach the final position has been reduced by a factor of two, 
while the control satisfies (1.3) as before, with a substantial margin. 
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